
Constraints on quantum hidden-variables and the Bohm theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 3615

(http://iopscience.iop.org/0305-4470/25/12/022)

Download details:

IP Address: 171.66.16.58

The article was downloaded on 01/06/2010 at 16:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 25 (1992) 3615-3626. Printed in the UK 
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AbslraeL In this paper the no-hidden-variables arguments of Mermin and Per= are 
assessed in the light of the Bohm formulation of  quantum theory. 

1. Introduction 

In order to resolve the question as to whether quantum mechanics can he consid- 
ered complete, various authors have provided arguments which attempt to constrain 
possible hidden-variable theories. These arguments make assumptions that delimit 
the possible character of the hidden variables and then go on to demonstrate that 
such restricted hidden variables are incapable of providing the desired completion of 
the quantum theoly. Now it is well known that a perfectly consistent hidden-variable 
formulation of quantum mechanics in fact exists: the de Broglie-Bohm theory [1,2]t. 
And just as the no-hidden-variable arguments tell us the features any theoly underly- 
ing quantum theory may not posses, the de Broglie-Bohm approach gives an insight 
into the features that a more complete quantum theory may indeed possess. Fur- 
thermore, if one looks at the proposed no-hidden-variable arguments from the Bohm 
point of view the restrictive assumptions that these arguments entail can he easily 
identified. 

In this paper the no-hidden-variables arguments of Mermin [3] and of Peres [4] 
wiii 'oe considered. Tnese 
spin-$ particles. The aim of both arguments is to show, for a given set of operators, 
not all of which commute, that it is not possible for certain types of hidden-variable 
theory to assign values (or measured outcomes) for all of the operators without 
inducing an algebraic contradiction. Both authors are aware that their arguments 
do  not rule out all types of hidden-variable theories and it is hoped that this paper 
W l l l  L"r,,p,wrr;rll LllGjll W " l h  vy CA'lrllrllg ,,IC ICd>"II> wrly LIIG dlgurttGLlrJ urcy p,upu>t: 
do not apply to the de Broglie-Bohm interpretation. 'lb facilitate our discussion we 
begin with a description of spin and its measurement according to the Bohm theory. 

spin measuremeniS arrieb Out an ma 

__.:I,  ".......I,. ---. .L": ^_  I .  L.. "...:-- .LA _^^I^_^ ._.... It.^ "-"..-"...- *I.̂.. __^_._^ 

t In fact there are significant differences between the theo!y of  Bohm and that of  de Broglie. specially 
concerning the many-body case. 

0305-4470~2/123615+12$04.50 @ I992 IOP Publishing Ltd 3615 
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2. The measurement of a spin component in  the Bohm theory 

An essential feature of the Bohm theory is the way it handles measurement and to 
facilitate our discussion the Bohm, Schiller and Tiomno (BST) [SI approach to the 
spin will be discussed in the context of the measurement of a component of the spin 
of a single particle. Full details may be found in [6]. In the Bohm approach a particle 
has a well-defined position I at all times. The particle trajectory is determined, once 
its (uncontrollable) initial position and its initial wavefunction are given, through 
the integral curves of the guidance formula 2)  = j / p ,  where j is the usual current 
and p the probability density. All observable quantities associated with the particle 
have well-defined values determined by the actual position of the particle and the 
wavefunction. It is important to understand that only those observables for which 
the state is an eigenstate have values that are eigenvalues. In general the value of 
an observable can take a continuum of (hidden) values, the act of measurement Or 
preparation transforms the existing value into an eigenvalue. A discussion of this 
point in the context of quantum transitions is given in [7]. This feature can also be 
seen clearly in the following analysis of spin measurement 

In the BST theoty the Pauli spinor is interpreted as defining a state of rotation 
given by the Eulerian angles 0,b and s through writing 

$ =  R(cos($O)exp ( + i ( d + s ) ] u +  + i s i n ( ~ B ) e x p [ - ~ i ( b - ~ ) ] u _ J  (1) 

P =  $++ (2) 

where R is a complex spatial amplitude and uzu+ = *U* The probability density is 

and the current 

yields the velocity 

The value of the spin is given by 

s = + h ( + ' u + / p )  = $h(si i i  @sin  ++,sin @ c o s  4,cos 0) .  (5 )  

To discuss spin measurement the time-dependent Pauli equation can be solved 
for the Stern-Gerlach (SG) magnetic field given some initial state. The particle 
trajectories can then be calculated by integrating equation (4) whilst the values of the 
spin components can be calculated from (5). 

Consider the initial state 

$ = fo(.)(c+u+ + c-u-)  (6) 

where fo is a Gaussian packet centred at z = 0 and we ignore the motion in the 
I and y directions. c, and C- are arbitrary constants. In this state the spin is 
independent of position. The values assigned to the spin components are 

2 '1 s z  = c+ - c: 
SI. = c;c- + czc, 

s Y = i(c?c, - c ; c - ) .  
(7) 
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Clearly these need not be the eigenvalues of the operators. If C+ = C- = 1/& and 
the measurement is carried out in the z direction then during the process the state 
of the system is transformed to 

+ = f + ( Z ) U ,  + f - ( z ju -  (8) 
where f+ and f- are two packets which separate in the z direction. The set of 
possible trajectories for this situation bifurcate along the plane z = 0. Those trajec- 
tories with initial position z < 0 enter the lower packet where uZ = -1, ur = 0 and 
by = 0 ,  whilst those with z > 0 enter the upper packet where U* = -1, U= = 0 
and uy = 0. During the measurement the spin and position become coupled and as 
the particle follows its trajectory the spin evolves continuously from = 1, uy = 0 
and ua = 0 to uz = i l , u =  = 0 and uy = O t .  If one now makes a measurement 
of uz on the f+ packet this packet splits along the plane z = 0, into two separating 
packets. One packet is associated with uz = 0, uz = 1 and U,, = 0 and the other 
with uz = 0, ur = -1 and U = 0. 

The manner in which a measurement disturbs the  system is clear and calculable 
in the Bohm approach. Evidently there can be no ensembles dispersion-free in each 
of u x ,  U= and uy simultaneously. The unavoidable distribution of particle positions 
within the wavepacket ensures that this is so. It is also clear that measuremenrs do 
not simply reveal pre-existing values in the Bohm theory and so there are no faithful 
measurements in quantum theory. 

3. Spin measurements on two spin-f particle systems 

’bo (possibly widely separated) SGS are arranged such that SGZ, which measures a 
spin component of particle two, is fixed in orientation along a z axis whilst SG1, which 
measures a spin component of particle one, may he rotated around the y axis by the 
angle 6. The direction in which SGI  is oriented shall be called z’. The coordinates 
z2 and z; are those that are significant from the point of view of inferring the value 
of the spin component in those measured directions. If after the measurement either 
z2 or z; turn out to be positive (negative) the value +l(-1) (in units of h / 2 )  is 
assigned to the z or z’ component of t h e  spin of that particle. (One might say that 
these components form the apparatus coordinates since by ohserving them the value 
of the spin may be inferred). Using only the z’ direction for particle one and the 
z direction for particle two, one can construct a section through the configuration 
space of the two-particle system that is two dimensional and thus visualizable. In this 
discussion the evolution of the probability density will be displayed in this section of 
the configuration space. The two-particle Pauli equation can be solved with the two 
SG fields for the time development of the Pauli spinor from a given initial state. The 
details of this calculation for the initial state (13) are given in [SI here we present 
the results in a somewhat novel way which brings out the interesting features more 
clearly. 

Firstly let us assume that the wavefunction of the two particle system at the 
entrance to the magnets is givcn by a product of a product spatial wavefunction and 
the singlet spin state. 

Y 

t Space prohibits the use of figures, which are given in 161. 
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where f l  and fi are normalized gaussian packets, z; and z2 are the coordinates 
of particles 1 and 2 in the z’ and z directions respectively and U , ~ U *  = *tu+, 
aZ2v* = *U+. This is the Einstein-Podolsky-Rosen-Bohm state. 

lo1 l b l  

Figure 1. The evolution of the probability density in the configuration space section 
spanned by z ’ ,  L. (0 )  Initial probability density. (b)  Final probability density 6 = 0. 
(c) Final probability density 6 = ~ 1 3 .  ( d )  Final probability density 6 = r / Z ,  

Figure l ( a )  shows the initial probability density in the  configuration-space section 
defined above for the state (9). Figures l (b)-(d)  show the probability density after the 
measurements are carried out when the two SGS are aligned (6 = 0), when rotated 
by rr/3 and when rotated by n/2, respectively. From these figures it is clear that 
altering the angle of one of the magnets, when the system is in the singlet state, alters 
the evolution of the system as a whole. Viewing the system in this way gives us a 
pictorial representation of the quantum feature of the indivizibility of many particle 
quantum systems so strongly emphasized by Bohr. This indivisibility would normally 
imply connection between the particles but in the usual formulation of quantum 
theory there is no way to discuss the evolution of the two particles separately. 

The use of configuration space in quantum mechanics is not a matter of conve- 
nience, as it is in classical mechanics. I n  general it is not possible to define separate 
wavefunctions, one for each particle, each of which obeys a separate and local single 
particle equation, which taken together can reproduce the behaviour of the system. 
The exception to this, of course, is when the configuration space wavefunction fac- 
torizes, in this case an equivalent pair of individual equations can be written down, 
individual wavefunctions can be defined unambiguously and the two particles behave 
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independently. Figure l(d) can be interpreted to apply in this case. If the initial 
spin state of the two particle system is a product of the eigenstates corresponding 
to  U$ = 1 for both particles and if the two measuremens are carried out in the z 
direction on each particle then the probability density develops as shown in figure 

4. Spin measurements on two spin-f particle systems, the Bohm theory 

For the two-particle case one takes the natural extensions to the definitions given for 
one particle 

i = 1 , 2  
h 
2 

5 ;  = -+ 'o ;* /p  

%2 
(12) 

, I  

5 , s )  = q * + o ; u , l L / P  i =  1 , 2  j =  1 , 2 .  

From these equations it is easily seen that given z and the quantum state * all 
the spin component operators and all of their products have well-defined values, hut 
not ail of these values may be eigenvalues simultaneously. It is this fact that enables 
the Bohm theory to avoid the algebraic contradiction which arises when one attempts 
to  assign values to individual operators and their products, such as those given by 
Mermin and Peres. 

2, 

I :  0 

Figure 2. Configuration space trajectories, ac- 
cording 10 the Bohm theory. when the spin is 
measured in Ihe i' and z direclions on particles 
1 and 2 respectively. (a )  6 = 0. (a) 6 = r / 3 .  
(c) 6 = n / 2 .  

-10 
-j/ ~ \ I  

20 -LO - 20 0 
*. 
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The results of the application of the Bohm theory to this case are discussed 
here in terms of the reduced configuration space trajectories associated with figures 
l(o)-(d). For clarity of presentation a set of initial positions of the two particles is 
chosen with z; = +4 or -4, whilst z2 = -9, -3, 3, 9, (in arbitrary units) this gives 
eight trajectories in all. Figures 2(a)-(c) show the configuration space. trajectories 
associated with figures l(b)-(d) respectively. Figure 2(a)  shows the trajectories for 
the case in which 6 = 0. Tne outcome oE the measurement in the fixed z direction 
on particle two, (whether z2  is positive or negative), for a given initial value of z 2 ,  
can depend on the initial value of z; in addition. For example the trajectory that 
starts at zz = - 4 , ~ ;  = +4, ends with z2 negative (and hence spin -l), whilst that 
trajectory that starts with z2 = - 4 , ~ ;  = -4 ends with z positive (and hence. spin 
+l). A similar dependence of the outcome for particle one on the  initial position of 
particle two is also evident in figure 2(b).  

LO 

20 

-LO 

D 0.01 0.10 0.11 0.20 0.25 0 0.05 0 10 0.15 0 20 0.2s 
Time Time 

-LO Figure 3. Trajectories of panicle 1. (a) 6 = 0 .  
( b )  6 = s/3. ( e )  6 = n / 2 .  0 0 05 0.10 0.15 0.20 0 25 

h e  

Figure 2(h) differs from figure 2(0) only in that the angle of SGI is altered, 
6 = 7r/3. Figure 2(c)  shows that when 6 = r / 2  the individual particle trajectories 
are independent. This is to be expected since there are no correlations in this case. 
In figure 2(c) any trajectory which starts from z2 < 0, ends with z2 < 0 (spin 
-l), regardless of the position of particle one. When 6 = 0 (figure 2(a) ) ,  the 
trajectory starting at  z2  = -4, z ,  = -4 ends with z2  positive (spin tl). It is clear 
from the differences between these figures that altering the orientation of SG1 can 
result in a different outcome for particle two even when the initial positions of both 
particles are held constant. The individual particle trajectories with the evolution of 
the coordinates with time are plotted in figures 3 and 4 respectively and are labelled 
(a), (b) and (c ) ,  corresponding to 6 = 0,7r/3 and ~ / 2 ,  respectively. 

As previously pointed out, if the initial spin state is a product of the eigenstate 
of U =  with eigenvalue 1 for each particle and the spin component in the z direction 
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Figurc 4. Trajectories of particle 2. ( a )  6 = 0. 
( b )  6 = r J 3 .  (c) 6 = n/Z. 

on each particle is measured figure 2(c) applies. For a given initial position for 
pariicie two a unique outcome is defined which is independent of the iniiiai position 
of particle one and the angle of SGI. 

Consider now the set of operators u I z ,  uZS, ulruZr and the product of these, the 
identity I. Clearly the eigenvalue of I is 1. The values assigned to the U operators in 
the Bohm theory according to (11) and (12) are zero in the state (9). Although the 
operators obey a product rule the assigned values in general do not. Of course, if 
the state of the system is an eigenstate of the set of operators the product rule will 
also hold for the assigned values. 

To summarize, in the Bohm theory we see that for spin measurements on two 
spin-; particles: 
1. the principle of faithful measurement does not apply, values assigned to observ- 

ables are only eigenvalues when the state of the sysytcm is an eigenstate of the 
corresponding operator; 

2. there are no ensembles dispersion free for cach of a set of non-commuting oper- 
ators; 

3. relations holding amongst operators nced not hold for the values assigned them 
except when the  state is a simultaneous eigcnstate of the operators concerned; 

4. when the state of the system is an entangled State the outcomc of a measurement 
on a 

5. when the state of the system is an cntangled State the outcome of a nieasurement 
on a single particle, for a given set of positions, can depend on which (if any) 
measurements is carried out on the other particle; and 

6. when the state of the system is a simple product the outcome of a measurement on 
one of the particles is independent of both the position of the other particle and 
the particular choice of measurements that may be made on the other particle. 

pgicic C a n  dcpcnd on !he position of the Q t h C T  parcic!c; 
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With these points in mind let us now examine the arguments given by Mermin 
and by Peres. 

5. The arguments of Mermin and of Peres 

Both arguments concern sets of operators defined on a system of two spin-f particles. 
Mermin considers the following set of nine operators 

The operators in each row and in each column commute. The product of the 
values of the operators in each row is 1, as indicated. The product of the values of 
the operators down each column is also 1 except in the last column for which the 

is clearly not possible to assign one of the values, +1 or -1 ,  to each operator in a 
manner consistent with the products shown. I n  straight quantum mechanics this is 
of course not surprising. There is no state which is a simultaneous eigenstate of the 
operators (they do not all commute) and hence not all of them can have well-defined 
values simultaneously. Any set of operators in a row or a column (except the last) can 
have simultaneously well-defined values (if the state of the system is a simultaneous 
eigenstate) but only at the expense of making thc values of the other non-commuting 
operators undefined. So much is elementary quantum mechanics. 

In the many-worlds approach to quantum mechanics one might say that there can 
be no contradiction since each row o r  column of operators can only have well-defined 
values in a different universe. 

We need to distinguish two possible interpretations of Mermin's argument. One, 
a strong interpretation, in which the values assigncd to the operators in the table, by 
the hidden-variable theory, are taken to be the values that a given system actually 
possess simultaneously (whether measured or not) in a given state. The other, a 
weaker interpretation, in which the values assigncd to the operators in the table are 
the values that would be Obtained when the systcm is in some State with specific 
hidden variables and a measurement is carried out. These values could be called 
counterfactual and (since there is no simultaneous eigcnstate of all the operators) 
they may not be attributed jointly a t  any time to an individual system. 

To produce the desired contradiction a number of assumptions are necesaly 
concerning the values assigncd by the hidden-variable theory. 
1. The values assigned to the Operators in thc tahle must be eigenvalues. 
2. Relationships obcyed by opcrators must always be obeyed by the assigned values. 
3. There is a unique value for each opcrator that does not depend on which other 

operators (if any) are measurcd on the systcm simultaneously. 
(a) The valuc assigncd to an operator for one particle does not depend on which 

(b) The values assigned to the product operatorj do not depend on which other 

iiio&Gci is -1, -- -:--- . .-I . .^ ,.r ,."-I. *L" -..---.,.-" I__^. 
L I K  crgc:livaruc UL C ~ L L I  0: ~ i i c  upcrdrui> I I I U L  be +I  o i  -I, biit it 

measurement is carried out on the other particle. 

operators (if any) are measured on the system simultaneously. 
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The strong form of the argument requires assumptions 1, 2 and 3. It fails for 
any hidden-variable theory in which assumption 1 does not hold, as is the case in the 
Bohm theory. If 1 does not hold then 2 need not. 

In the weak form of the argument 1 and 2 hold trivially. The third assumption 
need not hold in a hidden-variable theory. Indeed it does not in the Bohm theory. 

Now Mermin's argument does not depend on the state of the system, but the 
system will be in some state. If one assumes this state to be the product state 

+ = f ,( . l)f*(Z?). ,( l)U-(2) (13) 

or any similar state, then the Pauli equation splits into two independent equations and 
there can be no correlations between measurements carried out on particle one and 
measurements carried out on particle two separately. Assumption 3a holds trivially 
for (13). Let us examine Mermin's argument from the Bohm point of view. If we 
assume that the system is in the quantum state (13) then the values assigned to the 
operators in the table (in the strong sense) using equations (11) and (12) are 

0 0  0 1 
0 0 0 I1 

The state (13) is not a simultaneous eigenstate of any row or column of operators 
and so although the product relationship amongst the operators arc true these re- 
lationships do not hold for the actual assigned values. Indeed the values are not 
eigenvalues. 

Now let us assume that starting in state (13) with hiddcn variables zl, yl, z1 > 0 
and z2, yz, z2 > 0 a measurcment of u,,and U?# is carried out. If we assign a 
value to u12u2y that is simply the product of thc individual values the table has the 
following form 

1 0  0 1 
1 0  0 1 1  

If ulruZyr ulyu2r and ulru?:  are measured simultaneously, after the interaction the 
State of the system will be a Simultaneous eigenstate of these operators. Given the 
initial state (13) the final state will be either 

(14) 
1 

- - (u+(1)U+(?)  + iU-(1)u-(z) )  Jz 
with eigenvalues 1 , 1 , 1  for uLruay, ulgu2r and u,:uz: respectively, 01 

(15) 
1 

--(u+(l)U+(2) - i u - ( l ) U - ( ? ) )  Jz 
with eigenvalues - 1 , - 1 , l  Cor for ulru2y,ulyu3z and u12u2z respectively. 



3624 C Dewdnq 

The specific OutCOme in an individual Set of measurements will be determined by 
the hidden variables, but the table in a specific case could have the following form 

’”- 1 1 -1 

As it is not clear how such a measurement can in fact he carried out it is not possible 
to calculate whether the value assigned to say u12u2y is the same in this case as it 
was in the previous case when ulz and u2y were measured separately on the same 
initial state and for the same initial hidden variables. As is clear from (14) and (15) 
after the measurement is carried out the final state entails spin correlations. One 
might refer to the measurement as a non-local measurement since starting from a 
local factorized state a state entailing correlations is produced. 

In the weak form of the argument the values entered in the table are those 
that the hidden-variable theory predicts a measurement will reveal given the actual 
initial state, the measurement hamiltonian and the actual initial valuesof the hidden 
variables. Let us consider again the  state (13) and choose the hidden variables to 
he z1, yl, z1 > 0 and z?, y2, z2 > 0. The values for the product operators will be 
assumed to be obtained by measurement of the individual operators separately. The 
table of values then has the form 

4 1 1 -1 

The operator relations in the first two rows and the first two columns are trivially 
satisfied. The operator relation expressed in the third column is not satisfied by these 
counterfactual values since the way in which the measurements are assumed to be 
carried out does not involve measuring these operators simultaneously. If they were 
to be so measured then this would conflict with the operator relations in the first two 
rows and columns. 

The contradiction can he avoided if we assume that the value assigned to the 
product operators depends on which other operators are measured simultaneously. 
That is the product operator ulTu2y can have a different value (for the same set 
of hidden variables) when measured with u l r  and uL‘y than the value it has when 
measured with u,,u?,.and u1:u?:. That is, a contextual hidden-variable theory can 
avoid the contradiction. This point was made by Bell [‘,I historically in response to 
the original arguments of this type and also more recently by Brown [lo]. 

However Mermin’s argument has nothing to do with non-locality if one considers 
the sytem under discussion to be two spin-: particles in a product state. The same 
is not true Cor the argument of Percs. Pe& considers a subset of six of the nine 
operators mentioned above and relics on the properties of thc singlet spin state. (In 
fact Peres’ argument came lirst and was extended by Mermin). The six are 
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with products along rows and columns as shown. Again in a similar way values (or 
measurement outcomes) cannot be consistently assigned. Let us note that in straight 
quantum mechanics when a12a2y and alya2s have definite values a,=, uzz,  uzy and 
aly do not. 

Since the argument of Peres concerns the singlet state the assumption 3a is 
not trivially satisfied. Indeed if one relaxed this assumption, as Peres states, the 
contradiction could be avoided. The value assigned to ulz  (for example) could 
depend on the measurement carried out on particle two as it does explicitly in the 
Bohm theory. In this case the contextuality inherent in the  Bohm theory is manifested 
as non-locality. This amounts to a denial of faithful measurement, since a unique 
value that is simply revealed by measurement can not then he given for the individual 
particle operators in Peres’ example nor for the product operators in Mermin’s. 

6. Conclusion 

The value assigned to an operator for a given set of hidden variables also depends 
on the quantum state in the  Bohm theory. Consequently the value revealed by a 
measurement then depends on the hidden varibles, the initial quantum state and the 
measurement hamiltonian. The state-dependence of the values is the reason why both 
the strong and the weak forms of the arguments under consideration do not apply to 
the Bohm theory. The state dependence of the values also explains why even though 
the principle of faithful measurement does not apply in the Bohm theory it never- 
theless has the  same predictions for measured values. The state dependence is the 
origin of the contextuality displayed by the Bohm theory. In general a simultaneous 
eigenstate of the operators A,  B and C will be different to a simultaneous eigenstate 
of the set A,  D and E. Since the value assigned to A depends on the state, this 
value can be expected to be different in the two cases even if the bidden variables 
are the same. 

All no-hidden-variable theorems proposed thus far simply exclude an unrealistic 
(and nonexistent) set of theories. Although the no-hidden-variable arguments under 
consideration present their arguments in a novel, aCCeSSdbk and interesting way 
they are no exception. As the authors of these arguments undoubtedly appreciate 
viable hidden-wriable theories may be constructcd by incorporating contextuality and 
relaxing the requirements of faithful measurement and of locality. We simply wish to 
demonstrate that the Bohm theory does just this in a natural way. 
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